
Computational Issues in the Planning and Kinematics of Binary Robots
Matthew D. Lichter, Vivek A. Sujan, and Steven Dubowsky

{ lichter | vasujan | dubowsky@mit.edu }
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

Abstract
To meet the objectives of many future missions, robots
will need to be adaptable and reconfigurable. A concept
for such a robotic system has been proposed previously
based on using a large number of simple binary actuators.
Previous researchers have addressed some of the issues
brought up by robots with a few binary actuators. This
paper examines the computational feasibility of
controlling and planning such binary robotic systems with
a large number of actuators, including computation of
their workspace, forward kinematics, inverse kinematics
and trajectory following. Methods are proposed and
evaluated by simulation. Detailed error analysis and
computational requirements are presented. An example
of the planning for a binary walking robot is presented.

1. Introduction

Future robots will be needed to perform complex
tasks in difficult environments. For example, missions to
Mars will require robots to perform tasks such as
scouting, mining, conducting science experiments, and
constructing facilities for human explorers and settlers
[9]. To accomplish these objectives, robotic systems will
need to be lightweight, reliable and robust. Further, the
elements of these systems need to be capable of large and
fine motion, a large motion workspace, multiple degrees
of freedom, and have a small stowed volume. A new
design concept has been proposed to meet these
challenges [12, 15]. In this concept, robotic systems use
tens or hundreds of simple binary actuators embedded in a
flexible structures. Each of the binary degrees of freedom
contains a bi-stable element so that the actuators simply
flip the state of the joint. As the number of binary
degrees of freedom in the system increases, the
capabilities of the device approach that of a conventional
continuous robotic system. This is analogous to the
digital computer replacing the analog computer. The
control of such devices is rather simple. To achieve a
given position a set of joints simply need to be flipped.
No feedback is required and theoretically no “servo
errors” will exist. Control of such actuators has been
classified as sensor-less manipulation [4, 6, 12]. The
kinematics and control of such “hyper-redundant”
manipulators, both with and without binary actuation have
been studied by a number of researchers [1, 3, 7, 8, 12].
However, many of the planning and kinematics issues of
binary robots are fundamentally different and more
difficult than those of conventional robotics [3, 12, 15].
For example, the inverse kinematics problem for a binary
robot involves searching through a discrete set of
configurations to find the one that best matches the
desired state, rather than solving geometric equations to

determine joint angles or link lengths, as one would do for
a continuous systems. Most research has involved binary
robotic systems when the number of degrees of freedom
is relatively small, in the order of tens of DOF.

This paper describes analysis and simulation studies
performed to examine the feasibility of controlling and
planning binary-actuated robotic systems in real time
when the number of DOF is very large (hundreds or
thousands). Such systems are currently under
development [16]. The work also suggests planning
algorithms that can be used in future systems. The work
outlines some of the issues and potential methods for the
workspace analysis and optimization, the forward and
inverse kinematics, and trajectory planning of binary
robotic systems. These methods are then applied to
binary systems used for robot locomotion.

2. Workspace Analysis and Optimization

The workspace of a robot generally refers to the locus
of all points that a robot’s end-effector can reach [2].
With a continuous system, the workspace is usually a
region in continuous space (see Figure 1(a)). Many
continuous robots are also able to achieve a continuous
range of end-effector orientations for a given point in the
workspace. Understanding the size of the workspace as
well as the “orientability” of the end-effector within this
workspace gives some measure of the ability of the robot
to perform diverse manipulation tasks.

(a) continuous robot workspace (b) binary-actuated robot workspace
Figure 1: The distinction between binary and continuous robot

workspace
For binary-actuated robots the notion of a workspace

takes on some subtle differences [14]. For a binary
system, the workspace in not a continuous volume but
rather a finite set of points in space (see Figure 1(b)). For
each point there is an associated orientation of the end-
effector, indicated by the arrows originating from each
point in Figure 1(b). In such a workspace one can
guarantee the existence of at least one binary
configuration of the robot that achieves a minimum error
of end-effector position and orientation. Thus for a binary
robot, the density of the points within the workspace can
be important, since a dense set of points will generally
achieve small end-point errors. The density of points
increases as the number of actuators in the system

increases. Each additional actuator doubles the number of
workspace points.

It is useful to view a discrete workspace cloud from
the perspective of a density function map. In designing a
binary robot, one might want to optimize its workspace.
For example, it may be desirable for repeated pick and
place tasks to have a workspace that has a great density of
points in the pick and place locations. In other cases, it
might be desirable to have a uniform distribution of
reachable points over the entire workspace. To deal with
such issues the notion of workspace distribution is
proposed. For a planar robot, a density map represents
the density of points (the z-axis) versus the Cartesian
location in space (the x- and y-axes). With a discrete
cloud, the density map appears as delta functions at each
workspace point, with all other areas of the map having a
value of zero density (see Figure 2 (a)). Applying a low-
pass filter (such as convolution with a Gaussian function)
to the density map, the spikes blend together and provide
a continuous approximation of the density of the
workspace (see Figure 2(b)).

(a) discrete point cloud

(b) continuous representation

(c) optimized uniform workspace density

Figure 2: Workspace of a 6 DOF serial binary manipulator with
optimization

This continuous approximation can be a metric for
the uniformity/distribution of the workspace. Here it is
defined based on the standard deviation of the workspace
density. A small standard deviation of the workspace
density indicates a more uniform distribution. This
method for quantifying the distribution of the workspace
can be extended to three-dimensional workspaces and
include endpoint orientation information.

As an example of optimizing a binary robot design to
provide uniform workspace density, consider a serial
planar manipulator, having between four and ten binary

actuators. The lengths of each link, li, and the angles of
deviation of each binary rotary joint, ϕI are to be
optimized. This robotic design results in a planar
workspace composed of 2N points, where N is the number
of binary actuators.

Using an evolutionary algorithm the design variables
of this system can be optimized. The algorithm generates
a random set of candidate designs and evaluated them
based on their uniformity of workspace. The best
candidates (those with the most uniform workspace
densities) are evolved in the classical manner with
mutation. A few hundred generations result in good
solutions to the problem. An example of one such
optimization (for an un-optimized system shown in figure
2(a)) is shown in Figure 2(c). Note that the density map
in this figure is much more uniform than the one shown in
Figure 2(b).

3. Kinematics
3.1. Forward Kinematics

For binary robotic systems, it is convenient to
formulate the forward kinematics using four-by-four
homogeneous transformation matrices [2]. For example,
the transformation matrix A0,M describing the position and
orientation of the end-effector relative to the base can be
viewed as the product of the M intermediate
transformations Ai-1,i from module to module within the
structure:

∏
=

−− =⋅⋅⋅=
M

i
iiMMM AAAAA

1
,1,12,11,0,0 Κ (1)

where M is the number of intermediate modules
comprising the binary robotic system [15].

 Due to the discrete nature of binary devices, each
term of the intermediate transformation Ai-1,i can have
only a finite number of possible values. If each module
has only a few binary degrees of freedom, all the values
that the terms of Ai-1,i can be easily enumerated. For
example, if a module has three binary DOF, then the
module has 23 or 8 possible values for Ai-1,i (notated by Ai-

1,i
(1), Ai-1,i

(2), …, Ai-1,i
(8)). The solution of the module

kinematics may require trigonometric or more complex
mathematics, but these need only be solved once, and
possibly offline. This reduces online computational
loads.

Figure 3: BRAID—a serial chain of binary-actuated parallel

stages
An example of such a robot is the Binary Robotic

Articulated Intelligent Device (BRAID), developed at the
Field and Space Robotics Laboratory, which is a serial
stack of identical parallel stages [15] (see Figure 3). Such

 …

a design could be used for manipulating instruments,
collecting soil samples, or mating two cooperating robots,
applications that require only moderate precision (see
Figure 4).

 (a) mating two rovers (b) instrument maneuvering

Figure 4: Potential BRAID applications
In a single parallel link stage of the BRAID system,

the three legs are positioned about the vertices of two
equilateral triangles. Additionally, based on the joint
configuration of each leg, the single stage has only three
degrees of freedom—pitch (θx) and yaw (θy) rotations and
a vertical (z) translation (coupling effects lead to non-
independent motions in the x and y directions as well).
The four by four transformation matrix Ai-1,i, of the ith
coordinate frame with respect to the i-1th coordinate frame
is defined based on these five motions. The matrix A0M
defines the forward kinematics from base to end-effector
of the entire system. In this formulation the leg lengths
are the control variables. The relationship between these
leg lengths and the pitch, yaw, and translation motions of
the ith coordinate frame with respect to the i-1th coordinate
frame is given below. From Figure 5 the deflection
parameters (δi, γi, ψi) give us the coupled xi and yi
translation of the ith stage:

)sin(11 γδ iix −=








−−−= i

x

xi
i rry θ

π
γδ cos

26cos
sin

2
33 (2)

Flexur e to allow lateral motion of the links

xi-1

yi-1

zi-1

zi

xi

li1

li
2

li3

yi

δδδδi
j

γγγγi
j

ψψψψi
j

(a) Single BRAID module

X Y

Z

Z'

X'

Y'

A

B

C

D

E

F

G

H

60 o

60 o

60 o

l i 1

l i 3
l i 2

hi 1

hi 2

hi 3

(b) geometrically equivalent representation

Figure 5: Critical parameter representation of BRAID system

The following relations can be obtained from figure 5:

x
ii rlh θθθ sin

2
3sinsin 1121 =− (3)

y
ii rhh θαα sin

3
2sinsin 1322 =− (4)

where θ1=∠ DAB, θ2=∠ ADC, α1=∠ EHG, and α2=∠ FEH,
can be found from the leg lengths il1 , il2 , and il3 .
Equations 3 and 4 give two independent equations in two
unknowns. However, both are highly non-linear
transcedental equations and can only be solved
numerically to give the BRAID forward kinematics. A
Newton-Raphson algorithm was implemented to solve for
the unknowns, θx and θy. Finally, the vertical translation
can be solved using solutions for θx, θy and equation 5.

x
i

y
ii rhrhz θθθα sin

2
1sinsin

3
1sin 2122 −=−= (5)

3.2. Inverse Kinematics
The planning and execution of practical tasks

generally requires the solution to the inverse kinematics
problem. The complexity of the trajectory planning and
inverse kinematics software of binary devices are more
complex than that of continuous systems. The inverse
kinematics problem cannot be expressed in a closed form
solution. Brute force or exhaustive search methods may
prove appealing for systems with few stages (less than 5),
but become impractical for larger systems. As the
number of degrees of freedom increase, the complexity of
the workspace grows exponentially. For example, for
every additional stage in the BRAID there is about an
order of magnitude increase in the number of states in the
workspace. Hence, for large systems more efficient
search methods are required to find “optimum” solutions.
In this study two search methods for the inverse
kinematics problem are studied. The first is a
combinatorial search algorithm and the second is a
genetic search algorithm. The search metric for both
algorithms is to minimize the error between the true end-
effector and desired position. Both algorithms are briefly
described below.
3.2.1. Search Algorithms
The combinatorial search algorithm was first described in
[12]. To avoid exponential growth of the search space as
the number of actuators grow, the inverse kinematics are
solved by changing the state of only a few actuators at a
time. This is perceived as a k-bit change to the given
system state, where any system state is defined by an m-
bit word (m is the number of binary actuators). At any
state all possible changes (of up to k-bits, where k ≤ N)
are evaluated to determine the one that optimizes the
search metric (i.e. reduces the error between the end-
effector position and the desired position). This optimal
change forms the new state of the system and the search
procedure repeats until convergence. This reduces the
computational complexity from O(2N) to O(Nk) or from
exponential computational time to polynomial
computational time [12].

The genetic algorithm used, is a classical one, where
each generation consists of N-bit binary words describing

the manipulator state (where m is the number of binary
actuators). A full description of genetic algorithms can be
found in [5]. Comparing the genetic algorithm to the
others discussed, the size of the search space explored by
the genetic algorithm is given by:

PGEsizespacesearch ⋅⋅=__ (6)
where E is the number of populations separately evolved,
G is the number of generations for each population, and P
is the number of individuals within the population. In
studies done here, E, G, and P were kept constant relative
to the number of degrees of freedom, N. For more
advanced algorithm development, these values could be
made a function of N. Within the algorithm, several
computations take place that are linearly proportional to N
(such as forward kinematics computations) and therefore
computation time of the inverse kinematics using a
genetic algorithm grows approximately linearly with the
number of DOF of the system.
3.2.2. Algorithm Comparisons

Performance of the two search methods is quantified
on a stochastic basis using a Monte Carlo method. One
thousand target points with random orientations are
selected randomly within the volume of a binary
workspace cloud of a multi-staged BRAID system. The
targets are chosen from within a spherical region, whose
radius is roughly 90% of the radius of the actual point
cloud. The inverse kinematics for each target pose is then
solved for and the solution times and pose errors are
computed and recorded. For comparison, results from
exhaustive searching are also presented.

Figure 6 shows the times for solving the inverse
kinematics problem for the two algorithms described
above. The times were computed from simulations
performed on a 600 MHz Pentium III processor. In these
studies, the exhaustive search was observed to be the
fastest for systems with less than 12 DOF, the
combinatorial algorithm was the fastest for systems
having between 12 and 40 DOF, and the genetic
algorithm was the fastest for larger systems.

Figure 6: Inverse kinematics algorithms solution times

Errors in position and orientation for the algorithms
are also quantified. An example of the distribution of the
errors is shown in Figure 7 for the case of a 30 DOF (a 10
stage) BRAID. The shapes of the error distributions for
any given BRAID are very similar for each of the

algorithms and most closely resemble a gamma
distribution. The outliers are generally near the
boundaries of the workspace, and in practice tasks should
be planned to avoid these regions.

Figure 8 shows that the median errors drop as a
function of the number of DOF for the combinatorial and
genetic search algorithms. After about 30 DOF, there are
only marginal improvements as the number of DOF
increases. For systems with 30 DOF (a ten-stage
BRAID), displacement errors are within a few percent of
the characteristic manipulator length and angular errors
are within fifteen degrees. Such a system is unsuitable for
precision work, but may be acceptable for such tasks as
camera placement, crude instrument manipulation, and
sample collection.

Figure 7: Error distribution for a 30-DOF BRAID: displacement

error (1000 samples)

Figure 8: Median errors vs. number of DOF for different
algorithms: displacement error (1000 samples per DOF)

4. Trajectory Following

The trajectory following problem is also quite
different for a binary device than for continuous ones.
Instead of using Jacobian matrices to compute actuator
commands [2], the problem is solved by a repeated search
through the configuration space to find the configuration
whose end-effector most closely matches a moving target
[12]. Hence, this problem is very close to the methods
described above and can be directly applied. For low-
DOF systems, the exhaustive search may prove to be the
easiest and most robust method for trajectory following.
For systems with higher DOF, genetic algorithms or
combinatorial searches would be more effective.
However, it was found that the genetic algorithm used is
not well suited for trajectory following. A genetic
algorithm, given the same target and the same initial
conditions, will produce different solutions because of its
randomly selected initial population and mutation

component. Since the high DOF system is highly
redundant, there can be a large number of configurations
that will produce nearly the same end-effector position yet
will have greatly different configurations. A relatively
smooth path planned in Cartesian space may have an
erratic path in configuration space (see Figure 9). For
power consumption, reliability, and transient behavior,
this is very undesirable.

Hence, the combinatorial search algorithm is found to
be the most effective method for trajectory following.
This algorithm searches only the subset of neighboring
configurations, and generates a path that is relatively
smooth in Cartesian and configuration space. Between
time steps, only a few (specifically defined) actuators will
be actuated at a time. The combinatorial algorithm runs
much faster in the trajectory planning problem than for
the inverse kinematics problem described in Section 3.2.1,
since it only makes one iteration per time step (see Figure
10).

Figure 9: A smooth trajectory in Cartesian space is not

necessarily smooth in configuration space

Figure 10: Inverse kinematics solution times for each trajectory

following step
Simulations showed that the errors maintained during

trajectory following were acceptable for a number of
applications such as maneuvering a camera or instrument,
or manipulating an object with low precision (see Figure
11). Typical errors during manipulation were found to be
of roughly the same size as those discussed in Section
3.2.2.

Figure 11: Simulation of a camera maneuvering task—desired

trajectory: lighter path; actual trajectory: darker path.

5. Locomotion Planning
The trajectory following problem can be extended to

the locomotion planning problem, where binary devices
are used as legs. Simulations were done to explore the
feasibility of planning actuator sequences in real-time for
a robot having six binary-actuated legs walking in rough
terrain. Each of the six legs is modeled as a BRAID and
has 21 binary DOF (see Figure 12), yielding a total of 126
DOF for the system. Desired ground contact points for
the legs are chosen and the configurations and actuator
sequences are planned to achieve these contact points and
body motions.

Figure 12: Simulation of a 6x21-DOF walking robot composed

of six BRAIDs for legs, walking in rough terrain.
Several issues arise with a binary system for this

problem. First, the multiple legs in contact with the
ground form a closed kinematic chain that is over-
constrained due to the discrete nature of the leg motions.
If the ground contact points are rigidly held, it will be
impossible for the contacting legs to change
configurations due to the incompatibilities between each
leg’s workspace (see Figure 13(a)). Thus, it is impossible
to shift the body while keeping the feet planted, as
required for walking. Here a small amount of local
compliance in the ground contact is permitted and the
limited effects of the incompatibilities between the
workspaces of planted legs are ignored (see Figure 13(b)).

(a) rigid model

(b) semi-compliant model

Figure 13: Kinematic models in simulation
A second issue arises in finding the binary

configuration of the legs that allows the body to move in a
prescribed manner. The system can be considered as a
single parallel 126 DOF system with ground contact
points modeled as continuous revolute joints with

displacement compliance. With the requirement that
trajectories are smooth in both Cartesian and
configuration space, this system becomes computationally
difficult to solve quickly. To simplify this locomotion-
planning problem, each leg was viewed as an independent
trajectory planning problem. First, the desired position of
the body for the next small time step is selected. Then,
the inverse kinematics for each leg is solved using the
one-pass combinatorial algorithm to make the leg move to
the desired ground contact point.

With the configuration of each leg being solved
independently, the actual body position does not coincide
exactly with the desired body position. The actual body
position is obtained from the equilibrium condition of the
compliant contact elements on the fixed configuration
robot. This problem is solved by minimizing the potential
energy stored in the compliant elements as a function of
final body position. The error requiring adjustments is
small, roughly the size of the errors in the legs
themselves, generally a few percent of the characteristic
size (see Section 3.2.2). For most applications, these
errors would be acceptable.

This planning method is found to be effective and
fast. Using a Pentium III 933 MHz processor, the
simulated robot plans and executes a stride at a rate of
once per second. The robot is able to execute side-
stepping and turning motions in rough terrain. It
maintains static stability while walking on slopes up to 20
degrees. Static stability is only lost occasionally
ascending, descending, and traversing very steep slopes of
around 45. This loss of stability would need to be
addressed by the high-level planner of the robot [11].
This requirement would be the same for robots with
continuous degrees of freedom.

6. Conclusions

This paper considers some of the computational
challenges for the planning of binary robotic systems.
The notion of a binary workspace optimization was
described. The forward kinematics of binary systems was
discussed, and the computational simplicity of this
operation relative to continuous systems was shown. The
methods to solve the inverse kinematics and trajectory
planning were addressed and compared to those of
continuous systems. The positioning errors of binary
systems were also quantified in a probabilistic manner.
The methods were applied to a walking system that might
be used for future space exploration.

Acknowledgements
The authors would like to acknowledge the NASA
Institute of Advance Concepts (NIAC) for their support in
this work.

References
[1] Chirikjian, G.S.; Burdick, J.W. The kinematics of
hyper-redundant robot locomotion. IEEE Transactions
on Robotics and Automation. Volume: 11 Issue: 6, Dec.
1995 Page(s): 781 –793

[2] Craig J J. Introduction to Robotics: Mechanics and
Control. Second ed, Addison-Wesley, Reading, MA,
1989.
[3] Ebert-Uphoff, I.; Chirikjian, G.S. Inverse kinematics
of discretely actuated hyper-redundant manipulators
using workspace densities. Proceedings of the IEEE
International Conference on Robotics and Automation,
1996, Volume: 1, Page(s): 139 -145 vol.1.
[4] Erdmann, M.A. and Mason, M.T. Exploration of
sensor-less manipulation. IEEE Journal of Robotics and
Automation, Vol. 4, pp 369-379, August 1988.
[5] Goldberg, D. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
Reading, MA 1989.
[6] Goldberg, K. Orienting polygonal parts without
sensors. Algorithmica, 1992, Special Robotics Issue.
[7] Huang, M.Z., Shou-Hung Ling. Kinematics of a
class of hybrid robotic mechanisms with parallel and
series modules. Proceedings of the 1994 IEEE
International Conference on Robotics and Automation,
Page(s): 2180 -2185 vol.3.
[8] Hughes, P.C. Trussarm – a variable geometry truss
manipulator. Journal of intelligent materials, systems and
structures, vol. 2, pp. 148-160, April 1991.
[9] Huntsberger, T.L., G. Rodriguez, and P. S.
Schenker. Robotics: challenges for robotic and human
Mars exploration. Proceedings of ROBOTICS2000,
Albuquerque, NM, Mar 2000.
[10] Kwon, S., Youm, Y. General algorithm for
automatic generation of the workspace for n-link
redundant manipulators. Proceedings of the International
Conference Advanced Robotics, 1991. 'Robots in
Unstructured Environments', Page(s): 1722 -1725 vol.2.
[11] Latombe J. Robot Motion Planning. Kluwar
Academic Publishers, Boston, MA 1991.
[12] Lees, D.S. and Chirikjian, G.S. A combinatorial
approach to trajectory planning for binary manipulators.
Proceedings of the IEEE International Conference on
Robotics and Automation, Minneapolis, Minnesota, April
1996.
[13] Lichter, M.D., Sujan, V.A., Dubowsky, S.
Experimental Demonstrations of a New Design Paradigm
in Space Robotics. Proceedings of the Seventh
International Symposium on Experimental Robotics,
ISER 00. Dec 10-13, 2000, Honolulu, Hawaii.
[14] Sen D, Mruthyunjaya T S. A Discrete State
Perspective of Manipulator Workspaces. Mech. Mach.
Theory, Vol. 29, No.4, 591-605, 1994.
[15] Sujan, V.A., Lichter, M.D., and Dubowsky, S.
Lightweight Hyper-redundant Binary Elements for
Planetary Exploration Robots. Proceedings of the 2001
IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM '01). 8–11 July 2001,
Como, Italy.
[16] Hafez, M., Lichter, M.D., and Dubowsky, S.
Optimized Binary Modular Reconfigurable Robotic
Devices. Proceedings of the 2002 IEEE International
Conference on Robotics and Automation. Washington,
D.C., May 11-15, 2002.

