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Abstract 
To meet the objectives of many future missions, robots 
will need to be adaptable and reconfigurable.  A concept 
for such a robotic system has been proposed previously 
based on using a large number of simple binary actuators.  
Previous researchers have addressed some of the issues 
brought up by robots with a few binary actuators.  This 
paper examines the computational feasibility of 
controlling and planning such binary robotic systems with 
a large number of actuators, including computation of 
their workspace, forward kinematics, inverse kinematics 
and trajectory following.  Methods are proposed and 
evaluated by simulation.  Detailed error analysis and 
computational requirements are presented.  An example 
of the planning for a binary walking robot is presented. 
 
1. Introduction 

Future robots will be needed to perform complex 
tasks in difficult environments.  For example, missions to 
Mars will require robots to perform tasks such as 
scouting, mining, conducting science experiments, and 
constructing facilities for human explorers and settlers 
[9].  To accomplish these objectives, robotic systems will 
need to be lightweight, reliable and robust.  Further, the 
elements of these systems need to be capable of large and 
fine motion, a large motion workspace, multiple degrees 
of freedom, and have a small stowed volume.  A new 
design concept has been proposed to meet these 
challenges [12, 15].  In this concept, robotic systems use 
tens or hundreds of simple binary actuators embedded in a 
flexible structures.  Each of the binary degrees of freedom 
contains a bi-stable element so that the actuators simply 
flip the state of the joint.  As the number of binary 
degrees of freedom in the system increases, the 
capabilities of the device approach that of a conventional 
continuous robotic system.  This is analogous to the 
digital computer replacing the analog computer.  The 
control of such devices is rather simple.  To achieve a 
given position a set of joints simply need to be flipped.  
No feedback is required and theoretically no “servo 
errors” will exist.  Control of such actuators has been 
classified as sensor-less manipulation [4, 6, 12].  The 
kinematics and control of such “hyper-redundant” 
manipulators, both with and without binary actuation have 
been studied by a number of researchers [1, 3, 7, 8, 12].  
However, many of the planning and kinematics issues of 
binary robots are fundamentally different and more 
difficult than those of conventional robotics [3, 12, 15].  
For example, the inverse kinematics problem for a binary 
robot involves searching through a discrete set of 
configurations to find the one that best matches the 
desired state, rather than solving geometric equations to 

determine joint angles or link lengths, as one would do for 
a continuous systems.  Most research has involved binary 
robotic systems when the number of degrees of freedom 
is relatively small, in the order of tens of DOF. 

This paper describes analysis and simulation studies 
performed to examine the feasibility of controlling and 
planning binary-actuated robotic systems in real time 
when the number of DOF is very large (hundreds or 
thousands).  Such systems are currently under 
development [16].  The work also suggests planning 
algorithms that can be used in future systems.  The work 
outlines some of the issues and potential methods for the 
workspace analysis and optimization, the forward and 
inverse kinematics, and trajectory planning of binary 
robotic systems.  These methods are then applied to 
binary systems used for robot locomotion. 

 
2. Workspace Analysis and Optimization 

The workspace of a robot generally refers to the locus 
of all points that a robot’s end-effector can reach [2].  
With a continuous system, the workspace is usually a 
region in continuous space (see Figure 1(a)).  Many 
continuous robots are also able to achieve a continuous 
range of end-effector orientations for a given point in the 
workspace.  Understanding the size of the workspace as 
well as the “orientability” of the end-effector within this 
workspace gives some measure of the ability of the robot 
to perform diverse manipulation tasks. 

 
(a) continuous robot workspace        (b) binary-actuated robot workspace 
Figure 1: The distinction between binary and continuous robot 

workspace 
For binary-actuated robots the notion of a workspace 

takes on some subtle differences [14].  For a binary 
system, the workspace in not a continuous volume but 
rather a finite set of points in space (see Figure 1(b)).  For 
each point there is an associated orientation of the end-
effector, indicated by the arrows originating from each 
point in Figure 1(b).  In such a workspace one can 
guarantee the existence of at least one binary 
configuration of the robot that achieves a minimum error 
of end-effector position and orientation.  Thus for a binary 
robot, the density of the points within the workspace can 
be important, since a dense set of points will generally 
achieve small end-point errors.  The density of points 
increases as the number of actuators in the system 



increases.  Each additional actuator doubles the number of 
workspace points. 

It is useful to view a discrete workspace cloud from 
the perspective of a density function map.  In designing a 
binary robot, one might want to optimize its workspace.  
For example, it may be desirable for repeated pick and 
place tasks to have a workspace that has a great density of 
points in the pick and place locations.  In other cases, it 
might be desirable to have a uniform distribution of 
reachable points over the entire workspace.  To deal with 
such issues the notion of workspace distribution is 
proposed.  For a planar robot, a density map represents 
the density of points (the z-axis) versus the Cartesian 
location in space (the x- and y-axes).  With a discrete 
cloud, the density map appears as delta functions at each 
workspace point, with all other areas of the map having a 
value of zero density (see Figure 2 (a)).  Applying a low-
pass filter (such as convolution with a Gaussian function) 
to the density map, the spikes blend together and provide 
a continuous approximation of the density of the 
workspace (see Figure 2(b)).   

         
(a) discrete point cloud 

 
(b) continuous representation 

 
(c) optimized uniform workspace density 

Figure 2: Workspace of a 6 DOF serial binary manipulator with 
optimization  

This continuous approximation can be a metric for 
the uniformity/distribution of the workspace.  Here it is 
defined based on the standard deviation of the workspace 
density.  A small standard deviation of the workspace 
density indicates a more uniform distribution.  This 
method for quantifying the distribution of the workspace 
can be extended to three-dimensional workspaces and 
include endpoint orientation information. 

As an example of optimizing a binary robot design to 
provide uniform workspace density, consider a serial 
planar manipulator, having between four and ten binary 

actuators.  The lengths of each link, li, and the angles of 
deviation of each binary rotary joint, ϕI are to be 
optimized.  This robotic design results in a planar 
workspace composed of 2N points, where N is the number 
of binary actuators. 

Using an evolutionary algorithm the design variables 
of this system can be optimized.  The algorithm generates 
a random set of candidate designs and evaluated them 
based on their uniformity of workspace.  The best 
candidates (those with the most uniform workspace 
densities) are evolved in the classical manner with 
mutation.  A few hundred generations result in good 
solutions to the problem.  An example of one such 
optimization (for an un-optimized system shown in figure 
2(a)) is shown in Figure 2(c).  Note that the density map 
in this figure is much more uniform than the one shown in 
Figure 2(b). 

 
3. Kinematics 
3.1. Forward Kinematics 

For binary robotic systems, it is convenient to 
formulate the forward kinematics using four-by-four 
homogeneous transformation matrices [2].  For example, 
the transformation matrix A0,M describing the position and 
orientation of the end-effector relative to the base can be 
viewed as the product of the M intermediate 
transformations Ai-1,i from module to module within the 
structure: 
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where M is the number of intermediate modules 
comprising the binary robotic system [15]. 

 Due to the discrete nature of binary devices, each 
term of the intermediate transformation Ai-1,i can have 
only a finite number of possible values.  If each module 
has only a few binary degrees of freedom, all the values 
that the terms of Ai-1,i can be easily enumerated.  For 
example, if a module has three binary DOF, then the 
module has 23 or 8 possible values for Ai-1,i (notated by Ai-

1,i
(1), Ai-1,i

(2), …, Ai-1,i
(8)).  The solution of the module 

kinematics may require trigonometric or more complex 
mathematics, but these need only be solved once, and 
possibly offline.  This reduces online computational 
loads.   

 
Figure 3:  BRAID—a serial chain of binary-actuated parallel 

stages 
An example of such a robot is the Binary Robotic 

Articulated Intelligent Device (BRAID), developed at the 
Field and Space Robotics Laboratory, which is a serial 
stack of identical parallel stages [15] (see Figure 3).  Such 

 … 



a design could be used for manipulating instruments, 
collecting soil samples, or mating two cooperating robots, 
applications that require only moderate precision (see 
Figure 4). 

  
         (a) mating two rovers              (b) instrument maneuvering 

Figure 4:  Potential BRAID applications 
In a single parallel link stage of the BRAID system, 

the three legs are positioned about the vertices of two 
equilateral triangles.  Additionally, based on the joint 
configuration of each leg, the single stage has only three 
degrees of freedom—pitch (θx) and yaw (θy) rotations and 
a vertical (z) translation (coupling effects lead to non-
independent motions in the x and y directions as well).  
The four by four transformation matrix Ai-1,i, of the ith 
coordinate frame with respect to the i-1th coordinate frame 
is defined based on these five motions.  The matrix A0M 
defines the forward kinematics from base to end-effector 
of the entire system.  In this formulation the leg lengths 
are the control variables.  The relationship between these 
leg lengths and the pitch, yaw, and translation motions of 
the ith coordinate frame with respect to the i-1th coordinate 
frame is given below.  From Figure 5 the deflection 
parameters (δi, γi, ψi) give us the coupled xi and yi 
translation of the ith stage: 
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(a) Single BRAID module 

X Y

Z

Z'

X'

Y'

A

B

C

D

E

F

G

H

60 o

60 o

60 o

l i 1

l i 3
l i 2

hi 1

hi 2

hi 3

 
(b) geometrically equivalent representation 

Figure 5: Critical parameter representation of BRAID system 
 
The following relations can be obtained from figure 5: 
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where θ1=∠ DAB, θ2=∠ ADC, α1=∠ EHG, and α2=∠ FEH, 
can be found from the leg lengths il1 , il2 , and il3 .  
Equations 3 and 4 give two independent equations in two 
unknowns.  However, both are highly non-linear 
transcedental equations and can only be solved 
numerically to give the BRAID forward kinematics.  A 
Newton-Raphson algorithm was implemented to solve for 
the unknowns, θx and θy.  Finally, the vertical translation 
can be solved using solutions for θx, θy and equation 5. 
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3.2. Inverse Kinematics 
The planning and execution of practical tasks 

generally requires the solution to the inverse kinematics 
problem.  The complexity of the trajectory planning and 
inverse kinematics software of binary devices are more 
complex than that of continuous systems.  The inverse 
kinematics problem cannot be expressed in a closed form 
solution.  Brute force or exhaustive search methods may 
prove appealing for systems with few stages (less than 5), 
but become impractical for larger systems.  As the 
number of degrees of freedom increase, the complexity of 
the workspace grows exponentially.  For example, for 
every additional stage in the BRAID there is about an 
order of magnitude increase in the number of states in the 
workspace.  Hence, for large systems more efficient 
search methods are required to find “optimum” solutions.  
In this study two search methods for the inverse 
kinematics problem are studied.  The first is a 
combinatorial search algorithm and the second is a 
genetic search algorithm.  The search metric for both 
algorithms is to minimize the error between the true end-
effector and desired position.  Both algorithms are briefly 
described below. 
3.2.1. Search Algorithms 
The combinatorial search algorithm was first described in 
[12].  To avoid exponential growth of the search space as 
the number of actuators grow, the inverse kinematics are 
solved by changing the state of only a few actuators at a 
time.  This is perceived as a k-bit change to the given 
system state, where any system state is defined by an m-
bit word (m is the number of binary actuators).  At any 
state all possible changes (of up to k-bits, where k ≤ N) 
are evaluated to determine the one that optimizes the 
search metric (i.e. reduces the error between the end-
effector position and the desired position).  This optimal 
change forms the new state of the system and the search 
procedure repeats until convergence.  This reduces the 
computational complexity from O(2N) to O(Nk) or from 
exponential computational time to polynomial 
computational time [12]. 

The genetic algorithm used, is a classical one, where 
each generation consists of N-bit binary words describing 



the manipulator state (where m is the number of binary 
actuators).  A full description of genetic algorithms can be 
found in [5].  Comparing the genetic algorithm to the 
others discussed, the size of the search space explored by 
the genetic algorithm is given by: 

PGEsizespacesearch ⋅⋅=__       (6) 
where E is the number of populations separately evolved, 
G is the number of generations for each population, and P 
is the number of individuals within the population.  In 
studies done here, E, G, and P were kept constant relative 
to the number of degrees of freedom, N.  For more 
advanced algorithm development, these values could be 
made a function of N.  Within the algorithm, several 
computations take place that are linearly proportional to N 
(such as forward kinematics computations) and therefore 
computation time of the inverse kinematics using a 
genetic algorithm grows approximately linearly with the 
number of DOF of the system. 
3.2.2. Algorithm Comparisons 

Performance of the two search methods is quantified 
on a stochastic basis using a Monte Carlo method.  One 
thousand target points with random orientations are 
selected randomly within the volume of a binary 
workspace cloud of a multi-staged BRAID system.  The 
targets are chosen from within a spherical region, whose 
radius is roughly 90% of the radius of the actual point 
cloud.  The inverse kinematics for each target pose is then 
solved for and the solution times and pose errors are 
computed and recorded.  For comparison, results from 
exhaustive searching are also presented. 

Figure 6 shows the times for solving the inverse 
kinematics problem for the two algorithms described 
above.  The times were computed from simulations 
performed on a 600 MHz Pentium III processor.  In these 
studies, the exhaustive search was observed to be the 
fastest for systems with less than 12 DOF, the 
combinatorial algorithm was the fastest for systems 
having between 12 and 40 DOF, and the genetic 
algorithm was the fastest for larger systems. 

 

 
Figure 6:  Inverse kinematics algorithms solution times 

Errors in position and orientation for the algorithms 
are also quantified.  An example of the distribution of the 
errors is shown in Figure 7 for the case of a 30 DOF (a 10 
stage) BRAID.  The shapes of the error distributions for 
any given BRAID are very similar for each of the 

algorithms and most closely resemble a gamma 
distribution.  The outliers are generally near the 
boundaries of the workspace, and in practice tasks should 
be planned to avoid these regions.   

Figure 8 shows that the median errors drop as a 
function of the number of DOF for the combinatorial and 
genetic search algorithms.  After about 30 DOF, there are 
only marginal improvements as the number of DOF 
increases.  For systems with 30 DOF (a ten-stage 
BRAID), displacement errors are within a few percent of 
the characteristic manipulator length and angular errors 
are within fifteen degrees.  Such a system is unsuitable for 
precision work, but may be acceptable for such tasks as 
camera placement, crude instrument manipulation, and 
sample collection.   

 

 
Figure 7:  Error distribution for a 30-DOF BRAID: displacement 

error (1000 samples) 

 
Figure 8:  Median errors vs. number of DOF for different 
algorithms: displacement error (1000 samples per DOF) 

 
4. Trajectory Following 

The trajectory following problem is also quite 
different for a binary device than for continuous ones.  
Instead of using Jacobian matrices to compute actuator 
commands [2], the problem is solved by a repeated search 
through the configuration space to find the configuration 
whose end-effector most closely matches a moving target 
[12].  Hence, this problem is very close to the methods 
described above and can be directly applied.  For low-
DOF systems, the exhaustive search may prove to be the 
easiest and most robust method for trajectory following.  
For systems with higher DOF, genetic algorithms or 
combinatorial searches would be more effective.  
However, it was found that the genetic algorithm used is 
not well suited for trajectory following.  A genetic 
algorithm, given the same target and the same initial 
conditions, will produce different solutions because of its 
randomly selected initial population and mutation 



component.  Since the high DOF system is highly 
redundant, there can be a large number of configurations 
that will produce nearly the same end-effector position yet 
will have greatly different configurations.  A relatively 
smooth path planned in Cartesian space may have an 
erratic path in configuration space (see Figure 9).  For 
power consumption, reliability, and transient behavior, 
this is very undesirable.   

Hence, the combinatorial search algorithm is found to 
be the most effective method for trajectory following.  
This algorithm searches only the subset of neighboring 
configurations, and generates a path that is relatively 
smooth in Cartesian and configuration space.  Between 
time steps, only a few (specifically defined) actuators will 
be actuated at a time.  The combinatorial algorithm runs 
much faster in the trajectory planning problem than for 
the inverse kinematics problem described in Section 3.2.1, 
since it only makes one iteration per time step (see Figure 
10).   

 
Figure 9: A smooth trajectory in Cartesian space is not 

necessarily smooth in configuration space 

 
Figure 10:  Inverse kinematics solution times for each trajectory 

following step 
Simulations showed that the errors maintained during 

trajectory following were acceptable for a number of 
applications such as maneuvering a camera or instrument, 
or manipulating an object with low precision (see Figure 
11).  Typical errors during manipulation were found to be 
of roughly the same size as those discussed in Section 
3.2.2. 

 
Figure 11: Simulation of a camera maneuvering task—desired 

trajectory: lighter path; actual trajectory: darker path. 

5. Locomotion Planning 
The trajectory following problem can be extended to 

the locomotion planning problem, where binary devices 
are used as legs.  Simulations were done to explore the 
feasibility of planning actuator sequences in real-time for 
a robot having six binary-actuated legs walking in rough 
terrain.  Each of the six legs is modeled as a BRAID and 
has 21 binary DOF (see Figure 12), yielding a total of 126 
DOF for the system.  Desired ground contact points for 
the legs are chosen and the configurations and actuator 
sequences are planned to achieve these contact points and 
body motions. 

 
Figure 12: Simulation of a 6x21-DOF walking robot composed 

of six BRAIDs for legs, walking in rough terrain. 
Several issues arise with a binary system for this 

problem.  First, the multiple legs in contact with the 
ground form a closed kinematic chain that is over- 
constrained due to the discrete nature of the leg motions.  
If the ground contact points are rigidly held, it will be 
impossible for the contacting legs to change 
configurations due to the incompatibilities between each 
leg’s workspace (see Figure 13(a)).  Thus, it is impossible 
to shift the body while keeping the feet planted, as 
required for walking.  Here a small amount of local 
compliance in the ground contact is permitted and the 
limited effects of the incompatibilities between the 
workspaces of planted legs are ignored (see Figure 13(b)). 

 
(a) rigid model 

 
(b) semi-compliant model 

Figure 13:  Kinematic models in simulation 
A second issue arises in finding the binary 

configuration of the legs that allows the body to move in a 
prescribed manner.  The system can be considered as a 
single parallel 126 DOF system with ground contact 
points modeled as continuous revolute joints with 



displacement compliance.  With the requirement that 
trajectories are smooth in both Cartesian and 
configuration space, this system becomes computationally 
difficult to solve quickly.  To simplify this locomotion-
planning problem, each leg was viewed as an independent 
trajectory planning problem.  First, the desired position of 
the body for the next small time step is selected.  Then, 
the inverse kinematics for each leg is solved using the 
one-pass combinatorial algorithm to make the leg move to 
the desired ground contact point.  

With the configuration of each leg being solved 
independently, the actual body position does not coincide 
exactly with the desired body position.  The actual body 
position is obtained from the equilibrium condition of the 
compliant contact elements on the fixed configuration 
robot.  This problem is solved by minimizing the potential 
energy stored in the compliant elements as a function of 
final body position.  The error requiring adjustments is 
small, roughly the size of the errors in the legs 
themselves, generally a few percent of the characteristic 
size (see Section 3.2.2).  For most applications, these 
errors would be acceptable. 

This planning method is found to be effective and 
fast.  Using a Pentium III 933 MHz processor, the 
simulated robot plans and executes a stride at a rate of 
once per second.  The robot is able to execute side-
stepping and turning motions in rough terrain.  It 
maintains static stability while walking on slopes up to 20 
degrees.  Static stability is only lost occasionally 
ascending, descending, and traversing very steep slopes of 
around 45.  This loss of stability would need to be 
addressed by the high-level planner of the robot [11].  
This requirement would be the same for robots with 
continuous degrees of freedom. 

 
6. Conclusions 

This paper considers some of the computational 
challenges for the planning of binary robotic systems.  
The notion of a binary workspace optimization was 
described.  The forward kinematics of binary systems was 
discussed, and the computational simplicity of this 
operation relative to continuous systems was shown.  The 
methods to solve the inverse kinematics and trajectory 
planning were addressed and compared to those of 
continuous systems.  The positioning errors of binary 
systems were also quantified in a probabilistic manner.  
The methods were applied to a walking system that might 
be used for future space exploration. 
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