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Abstract Wheel sinkage is an important indicator of mobile
robot mobility in natural outdoor terrains. This paper presents
a vision-based method to measure the sinkage of a rigid
robot wheel in rigid or deformable terrain. The method is
based on detecting the difference in intensity between the
wheel rim and the terrain. The method uses a single grayscale
camera and is computationally efficient, making it suitable
for systems with limited computational resources such as
planetary rovers. Experimental results under various terrain
and lighting conditions demonstrate the effectiveness and
robustness of the algorithm.
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1. Introduction

Mobile robots are increasingly being employed in natural
outdoor terrain for applications such as forestry, mining,
and planetary exploration (Le et al., 1997; Gonthier and
Papadopoulos, 1998; Cunningham et al., 1999; Volpe, 2003).
In natural terrain, wheel-terrain interaction has a strong in-
fluence on robot mobility (Bekker, 1956; Wong, 1976). For
example, a robot traversing loose sand might experience sub-
stantial wheel sinkage and hence poor mobility (see Fig. 1).
Conversely, a robot traversing firm clay might experience
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small wheel sinkage and better mobility. With knowledge of
wheel sinkage, a mobile robot could modulate wheel torque
to improve traction, or revise its motion plan to avoid poten-
tially hazardous highly-deformable terrain (Iagnemma and
Dubowsky, 2004).

Wheel sinkage has been shown to be a key variable in esti-
mating and predicting wheel-terrain interaction phenomena
(Iagnemma et al., 2003; Kang, 2003), which can be important
for accurately estimating rover dynamics in deformable ter-
rain (Yoshida and Hamano, 2002). Wheel sinkage is also an
important input to terrain identification and classification al-
gorithms (Iagnemma and Dubowsky, 2004; Iagnemma et al.,
2002). These algorithms are particularly valuable in scien-
tific studies of soil properties during planetary exploration
missions (Volpe, 2003).

The recent experiences of the Mars Exploration Rovers,
Spirit and Opportunity, have clearly demonstrated the impor-
tance of wheel-terrain interaction in rough terrain mobility
(Bridges, 2004; Morris, 2004; Petit, 2004). Significant wheel
sinkage and slip has lead to loss of traction for Opportunity
during traverses to several scientifically significant sites in
both Eagle Crater and Endurance Crater. One of these tra-
verses was intended to move the rover away from a treach-
erous slope. During Spirit’s climb up the Columbia hills, its
right-front wheel was dragged through the soil, resulting in
significant sinkage and motion resistance. This has led to
errors in path tracking and increased power consumption. In
April–June 2005, substantial wheel sinkage in loose sandy
soil caused Opportunity to be nearly immobilized for sev-
eral weeks. The ability to measure wheel sinkage and terrain
conditions could potentially have enabled vehicle control
schemes that could have mitigated these problems.

Little research has addressed the problem of wheel sink-
age measurement or estimation. Previous research has mea-
sured the change in an articulated suspension’s configuration
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Fig. 1 Significant wheel sinkage on mockup of Spirit rover at NASA
Jet Propulsion Laboratory (NASA/JPL Image)

for the purposes of improving odometry and determining the
sinkage of wheels relative to one another (Wilcox, 1994).
However, absolute sinkage is necessary for mobility anal-
ysis and terrain identification algorithms. Wheel sinkage
can potentially be estimated using visual odometry methods
(Olson et al., 2001). Practical implementation of these meth-
ods for articulated suspension systems are relatively com-
plex, relying on accurate kinematic models of the rover and
the use of stereo-based feature identification and tracking
algorithms.

This paper presents a vision-based method for online mea-
surement of robot wheel sinkage in deformable terrain. The
algorithm is computationally efficient, and thus is suitable
for systems with limited resources, such as planetary rovers.
The algorithm relies on the difference in image intensity
between the wheel rim and surrounding terrain. Experimen-
tal results show that the algorithm is accurate and robust to
variation in terrain and lighting conditions.

The algorithm presented here measures rigid wheel sink-
age based on an image containing a view of a rover wheel,
such as the image captured by the belly-mounted hazard
avoidance cameras on Spirit and Opportunity. The MER
rovers and Mars Pathfinder rover have all used rigid metallic
wheels to reduce complexity and increase traction on rocky
slopes. Note that this algorithm can also be applied to Earth-
based mobile robots with rigid wheels or pneumatic tires,
if the tire inflation pressure is high compared to the terrain
stiffness (Bekker, 1956).

2. Algorithm overview

The goal of the algorithm is to measure wheel sinkage in rigid
or deformable terrain from a visual image of the wheel. It is

assumed that a camera is mounted on the robot body, with
a field of view containing the wheel. Sinkage is defined as a
pair of angles from the vertical termed left and right terrain
interface angles (see Fig. 2). This provides a general descrip-
tion of wheel sinkage in uneven terrain. To determine these
angles, only an annular region along the wheel rim (between
rrim and rwheel) needs to be examined. This reduces compu-
tational requirements by eliminating much of the scene.

It is assumed that the location of the wheel relative to
the camera is known. This is a reasonable assumption since
many robots have rigid suspensions. Robots with articulated
suspensions (such as Sojourner, Spirit, and Opportunity) are
generally instrumented with sensors that measure the state
of suspension articulation. Visual methods for identifying
the wheel center could be implemented, however this would
add computational complexity. The proposed approach can
be extended to steerable wheels by considering the steering
angle as part of the suspension configuration.

It is also assumed that the robot wheel rim is visually dis-
tinguishable from the surrounding terrain. This is generally
true for rigid, metallic wheels or dark pneumatic tires in nat-
ural terrains. Visual contrast can be enhanced by coloring the
wheel rim a non soil-like color such as yellow or blue. This
pixel-level difference in appearance eliminates the need for
computationally-intensive texture analysis or stereo-based
correlation. The algorithm instead relies on a relatively sim-
ple analysis of grayscale intensity along the wheel rim.

The algorithm consists of the following three steps:
(1) wheel rim identification, (2) pixel intensity computation,
and (3) terrain interface identification. The following section
describes these steps.

3. Algorithm description

The algorithm uses the following coordinate frames (see
Fig. 3):

– Wheel frame: A non-rotating frame fixed at the wheel hub,
with the x-y plane in the plane of the wheel and the z-axis
parallel to the wheel axle.

Fig. 2 Rigid wheel sinking into deformable terrain with left (θL) and
right (θR) terrain interface angles shown
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Fig. 3 Illustration of camera and wheel frames

– Camera frame: A frame fixed at the camera lens center
and with its x and y axes aligned to the image axes.

– Translated wheel (TW) frame: The wheel frame trans-
lated so its origin coincides with the origin of the camera
frame.

The position of a point in a coordinate frame is
represented by 4 × 1 column vectors, using homo-
geneous coordinate notation. For example, an arbitrary
point p can be represented by a 4 × 1 vector pwheel =
[px,wheel py,wheel pz,wheel 1]T in the wheel frame. Us-
ing this notation, affine transformations may be written as
4 × 4 matrices. Here three transformation matrices, Twheel

T W ,
TT W

camera , and Tcamera
wheel , are defined to relate a position vector

expressed in one frame to a position vector expressed in
another, such that pcamera = Tcamera

wheel pwheel.

3.1. Wheel rim identification and classification

The first step in the algorithm is to identify all pixels that lie
in a region of interest of the image. The region of interest
is defined as the lower half of the annular region between
the inner wheel rim diameter, rrim, and the outer wheel rim
diameter, rwheel (see Fig. 2). For rimless wheels or tires, rwheel

corresponds to the outer tire diameter and rrim is chosen to
be slightly less than rwheel.

For convenience, the camera is modeled as a pinhole
camera (Forsyth and Ponce, 2003). This model neglects the
distortion caused by lenses, however images may be pre-
processed to correct for this distortion. Using this model, the
inner and outer wheel rims are projected through the cen-
ter of the camera lens to form cones W and R, respectively.
Points on the wheel which lie within the outer wheel rim
(and therefore, within W) are imaged by pixels on the CCD
which also lie within W. Points on the wheel which lie within
the inner wheel rim are imaged by pixels which lie within R.

Cones W and R are represented in the translated wheel
frame by 4 × 4 matrices WTW and RTW , such that
pT

T W WT W pT W < 0 for any point p within cone W (and anal-
ogously for R). Matrices WTW and RTW are calculated using
the inner and outer wheel rim diameters and the position (cx,

cy, cz) of the camera in the wheel frame:

WT W ≡ A




1 0 0 0
0 1 0 0
0 0 −r2

wheel 0
0 0 0 0


 A−1 (1)

RT W ≡ A




1 0 0 0
0 1 0 0
0 0 −r2

rim 0
0 0 0 0


 A−1 (2)

where

A ≡




1 0 cx 0
0 1 cy 0
0 0 cz 0
0 0 0 1


 (3)

Note that conversion to the wheel frame (and analogously
to the camera frame) is accomplished as:

Wwheel = Twheel
T W WT W Twheel−1

T W , (4)

so that a position vector pwheel in the wheel frame lies within
W if pT

wheelWwheelpwheel < 0.
The region of interest is divided into two sections, cor-

responding to the left and right halves of the wheel (see
Fig. 4). This is done because terrain entry generally occurs
in one half of the wheel, and terrain exit occurs in the other.
Thus the algorithm will search for one terrain interface in
each section. Left and right sections are determined with re-
spect to the vector vdown. The vector vdown is a unit vector
perpendicular to the pitch angle of the vehicle (e.g. on flat
terrain, vdown is parallel to the gravity vector).

Each pixel in the image can be identified as a mem-
ber of one of three sets: (1) points belonging to the lower
left quadrant of the wheel annulus, Sleft; (2) points belong-
ing to the lower right quadrant of the wheel annulus, Sright;

Fig. 4 Annulus sections and vdown
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and (3) points that are not in the region of interest on the
wheel rim.

Because the CCD is a rectangular array of pixels, a 4 ×
3 matrix can be used to relate image pixel coordinates to a
position vector in the camera frame:

pcamera = Tcamera
pixel




xpixel

ypixel

1


 , (5)

where

Tcamera
pixel ≡




scaleX 0 fx

0 scaleY fy

0 0 fz

0 0 1


 , (6)

scaleX and scaleY are the number of inches per pixel in the x
and y directions, and fx, fy, and fz are the coordinates of pixel
(0,0) in the camera frame.

A point p on the camera image plane, corresponding to
the pixel (xpixel, ypixel), lies inside the annular area of interest
if it satisfies the following inequality:

pT
cameraWcamerapcamera < 0 < pT

cameraRcamerapcamera. (7)

If this inequality is satisfied, the point’s location on the left
or right half can be found by identifying its corresponding
projection onto the wheel rim, q. Projection is done by finding
the pixel’s position in the translated wheel reference frame,
pTW,

pT W = TT W
camerapcamera, (8)

scaling the position vector to lie on the plane of the wheel,

qT W =
[
−cz

px,T W

pz,T W
− cz

py,T W

pz,T W
− cz 1

]T

, (9)

and writing this position vector in terms of the wheel frame,

qwheel = Twheel
T W qT W , (10)

where cz is the z coordinate of the camera lens in the wheel
frame.

The point lies in the right half of the annulus if (vdown ×
qwheel) > 0, or as the determinant of a matrix:

∣∣∣∣∣∣∣∣


 vdown qwheel

0
0
1
0

0
0
0
1




∣∣∣∣∣∣∣∣
> 0. (11)

If (vdown × qwheel) ≤ 0, the point is in the left half.

3.2. Pixel intensity computation

The average grayscale intensity is computed for every row
of pixels in Sleft and Sright (see Fig. 5). A row is a set of pixels
aligned perpendicular to vdown. n rows are denoted as subsets
rleft,k ⊂ Sleft and rright,k ⊂ Sright, where k ∈ {1, . . . ,n}. Note
that n is a function of the spatial resolution �y and the wheel
diameter. A pixel has membership in row k if the following
equation is satisfied:

⌊
vT

downqwheel

�y

⌋
= k, (12)

where �y is an adjustable parameter corresponding to the
smallest change in sinkage the algorithm will detect. Note
that decreasing �y below the imaged resolution of the rim
will not increase accuracy.

For each row the summed intensity SI is computed as the
sum of each individual pixel’s intensity I:

SIright,k =
∑

p∈rright,k

I (p) (13)

SIleft,k =
∑

p∈rleft,k

I (p) (14)

Two n × 1 arrays of summed row intensities are thus formed.

3.3. Terrain interface identification

A one-dimensional spatial filter is employed to smooth the
intensity arrays and reduce the effects of noise. Here the
summed row intensities are weighted by the number of pixels
in a row (cright,k and cleft,k), to minimize the influence of noise
in low pixel-count rows.

A Gaussian distribution with variance m/2 is approxi-
mated by a binomial distribution w:

wl,m = (2m)!

22m(m + l)!(m − l)!
(15)

Fig. 5 Assignment of pixels to rows rleft,k and rright,k.
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Fig. 6 Sample plot of average pixel intensity vs. angular position

where l ∈ {− m, . . . , m}. This filter is applied to the summed
pixel intensities to produce a pair of filtered intensity arrays
FIright and FIleft:

FIright,k =
∑m

l=−m wl,mSIright,k+l∑m
l=−m wl,mcright,k+l

(16)

FIleft,k =
∑m

l=−m wl,mSIleft,k+l∑m
l=−m wl,mcleft,k+l

(17)

A representative plot of filtered intensity vs. angular po-
sition can be seen in Fig. 6. In this example, a dark wheel is
partially submerged in light terrain.

The terrain interface location is computed as the point of
maximum change in intensity between rows. This exploits
the fact that the wheel rim intensity is different from the
terrain intensity. The row index with maximum change in
intensity is simply:

Kright = arg max
k

(FIright,k − FIright,k−1) (18)

Kleft = arg max
k

(FIleft,k − FIleft,k−1) (19)

The interface angles θ∗
R and θ∗

L are then calculated from
Kright and Kleft as follows:

θ∗
R = cos−1

(
(Kright − 0.5)

�y

rwheel

)
(20)

θ∗
L = cos−1

(
(Kleft − 0.5)

�y

rwheel

)
(21)

3.4. Sinkage measurement on rigid terrain

The algorithm assumes the presence of a unique maximum
change in intensity along the wheel rim. In practice a unique
maximum can nearly always be found at the wheel-terrain
interface. However, errors can occur when the wheel contacts

Fig. 7 Wheel rigidly supported by a rock

a rigid patch of terrain, or rigid objects such as rocks. In these
situations none of the rim may be occluded by terrain (see
Fig. 7). Sensor noise and lighting effects will then lead to
false maxima and thus erroneous sinkage values.

This problem is addressed by appending a small set of
pixels to Sleft and Sright at index n + 1. These pixels are
taken from an image region below the center of the wheel
rim, and are expected to be representative of the local terrain.
If the wheel is resting on a rigid terrain surface, the maximum
change in intensity will occur between indices n and n + 1.
This correctly corresponds to a sinkage angle of zero. If
the maximum change in intensity occurs in the wheel rim
region, the algorithm will operate normally and return the
appropriate sinkage angle.

4. Experimental results

4.1. Experiment setup description

Experiments have been performed on the FSRL Wheel-
Terrain Interaction Testbed shown in Fig. 8. The testbed
consists of a driven wheel mounted on an undriven vertical
axis. Weights are added to this axis to replicate different ver-
tical loads on the wheel. Horizontal movement of the wheel
is actively controlled. A camera is mounted to the testbed so
that it moves horizontally with the wheel, but not vertically.
The vertical position of the wheel relative to the camera is
sensed with a potentiometer. This position is used to de-
termine the transformations between the reference frames.
Suspension configuration sensors would be used to perform
this function on a rover.

In this study, images from the testbed camera were col-
lected under different terrain and lighting conditions, includ-
ing variable wheel slip and terrain unevenness conditions,
variable soil colors, and with and without rocks. Lighting was
varied from uniform, diffuse illumination to a point-source
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Fig. 8 FSRL Wheel-Terrain
Interaction Testbed

Fig. 9 Sample wheel sinkage
measurement images from
image sets 1–6
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Fig. 10 Sample image of sinkage angles identified by the algorithm

that cast sharp shadows. In the data presented here, nine-
teen images were collected at two second intervals for each
set of conditions. Actual values for the wheel sinkage were
manually identified by a human analyst, based on these
images.

Figure 9 shows representative images from different con-
ditions. Image set 1 shows a wheel moving through flat ben-
tonite clay under uniform lighting with a high slip ratio. The
bentonite clay is dry and granular with a light tan color. The
high slip ratio causes the wheel to sink into the clay, yielding
a wide range of sinkages.

Set 2 shows a wheel moving with high slip ratio through
flat JSC Mars-1 soil simulant under uniform lighting (Allen
et al., 1997). JSC Mars-1 soil simulant is a brown mixture of
weathered volcanic ash particles developed to simulate the
color and consistency of Martian soil. The dark color tests
the algorithm effectiveness in situations with low contrast
between the wheel and terrain.

Set 3 shows a wheel moving through flat bentonite clay
under uniform lighting with low slip and nearly constant
sinkage. This simulates the conditions a rover might see
when driving over homogeneous terrain.

Set 4 shows a wheel moving through uneven bentonite
clay under uniform lighting in the presence of rocks. Rocks
occlude the wheel-terrain interface or appear as additional
potential interfaces. They also support it rigidly and thus
cause conditions with zero sinkage.

Set 5 shows a stationary, sunken wheel in uneven bentonite
clay illuminated by a moving point source. The moving light
source simulates the effect of a rover moving with respect
to the sun or vice versa. For the first image in this set, the
light source is far to the right of the wheel. The light source
is gradually moved from the right side to a point above and
behind the camera. It is then gradually moved down and to
the left of the wheel, so that in the last image the light source
is just above the surface of the terrain, far to the left of the
wheel.

Set 6 shows a wheel moving through uneven bentonite
clay illuminated by a stationary point source casting sharp
shadows. This simulates the most difficult conditions for the
algorithm, which would occur when the sun is low in the sky.

4.2. Passive lighting results

Representative results are shown in Figs. 10 through 12.
Figure 10 shows a sample image from image set 1 with
the algorithm-identified sinkage angles superimposed. The
center line shows the direction of vdown. The lines to the left
and right run from the center of the wheel to the left and
right terrain interfaces. It can be seen that the actual sinkage
angles closely match those identified using the algorithm.

Figure 11 plots the actual and visually-measured sinkage
as a percentage of the wheel radius for all images in image
set 1. The x-axis is the index of the image being analyzed,
corresponding to one of the 19 images collected in each
image set. The y-axis shows the sinkage as a percentage of
the wheel radius. The left and right plots show the sinkage
for the left and right sides of the wheel, respectively, for the
same images. The sinkage algorithm results match the actual
sinkage very accurately.

Fig. 11 Actual and
visually-measured sinkages for
image set 1 (Bentonite,
high-slip, flat terrain, fully-lit)
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Fig. 12 Actual and
visually-measured sinkages for
image set 5 (Bentonite,
stationary wheel, moving light
source)

Figure 12 shows similar results for image set 5. Since the
wheel is stationary and not digging into the terrain, a constant
sinkage should result even though the image changes due to
the moving light source. Note that actual sinkage values
vary slightly due to inaccuracies in manually identifying the
true sinkage. The visually-measured sinkage is close to the
actual sinkage for most of the images. Sources of errors are
discussed later in this section.

Table 1 summarizes results of sinkage angle measurement
for all six image sets. Error is computed as the difference be-
tween the visually-measured sinkage and the actual sinkage,
as a percentage of the wheel radius, for the left- and right-
side interface angles. Note that the actual sinkage in these
data sets varies from 0 to 60% of the wheel radius.

The algorithm detected wheel sinkage under a wide
range of conditions with good accuracy. Errors in set 4
were caused by rocks occluding the wheel-terrain interface.
While these small errors could be mitigated by a texture-
or geometry-based rock detection algorithm, adding such
an algorithm would drastically increase the computational
requirements.

A more significant error source was uneven lighting.
Sets 5 and 6 show substantially higher RMS error than sets
1–4. Reflections on the wheel rim occasionally caused
misidentifications. Other problems were the result of shad-
ows falling on uneven terrain itself, as seen in Fig. 11.
However, these errors tended to appear as easily-identifiable

Table 1 Visual wheel sinkage measurement results

Left-side angle Right-side angle
Image set (see Fig. 9) RMS error (%) RMS error (%)

1 1.08 1.61
2 2.40 2.46
3 2.33 2.48
4 5.21 2.06
5 5.10 12.10
6 8.85 14.01

“outliers” (i.e. as large anomalous changes in the visually-
measured angle) that could be mitigated by intelligent filter-
ing.

4.3. Active lighting results

An alternative method for minimizing errors caused by un-
even lighting is to employ active lighting. Figure 13 shows
a sample image from a series where a strobe was used to
illuminate the wheel-terrain interface (set 7). Here the wheel
was driving through topsoil, and the wheel rim was yellow,
providing good contrast. The results are plotted in Fig. 14.
In shadowy conditions similar to sets 5 and 6, tests using a
strobe to illuminate the wheel resulted in RMS errors of less
than 2% of the wheel radius.

4.4. Computational requirements

Computational requirements for this algorithm are rela-
tively low. The use of suspension configuration sensors to
identify the position of the wheel rim eliminates the need

Fig. 13 Sample image from set 7 (active lighting)
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Fig. 14 Actual and
visually-measured sinkages for
image set 7 (active lighting)

for vision-based detection of the wheel position, which
would likely increase computation significantly. A Matlab
version of the algorithm processed images at 3 Hz on a
Pentium III 933 MHz PC. An optimized compiled imple-
mentation would be expected to run significantly faster. For
image sets and settings discussed here, approximately 90,000
floating point operations were required per image. A stan-
dalone executable version of the code required 80 KB of
memory for the program, with an additional 60 KB of mem-
ory for execution. These low requirements suggest that the
algorithm is suitable for on-board implementation on a plan-
etary rover with limited computational resources.

4.5. Mars exploration rover image analysis

The algorithm was also tested on several images from the
Mars Exploration Rovers, manually estimating the coordi-
nate transformation parameters. Figure 15 shows a sample
image from the Spirit rover “Hazcam” of the left front wheel.

Fig. 15 Actual (cropped) image from Spirit left front Hazcam
(NASA/JPL Image)

Fig. 16 Computer identification of sinkage angles in Spirit image
(NASA/JPL Image)

Figure 16 shows the computer-identified sinkage angles for
this same image. Despite the narrow rim and low contrast
between the rim and the terrain, the algorithm appears to give
believable results. Actual values for the wheel sinkage were
unavailable for this data set. A modified rover wheel with a
wider rim painted black or white would make the algorithm
more robust to lighting variation.

5. Conclusion

A vision-based method for determining the sinkage of a robot
wheel in rigid or deformable terrain has been presented. The
method detects the location of the wheel-terrain interface by
finding the maximum change in intensity along the wheel
rim. The method is computationally efficient and uses a sin-
gle grayscale vision sensor, making it potentially suitable for
systems with limited computational resources such as plan-
etary rovers. Experimental results have shown the method to
be accurate and relatively robust to lighting variations. It has
also been shown that active lighting can be implemented to
further improve measurement accuracy.
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